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Today

e Visual analytics theory and motivation
e Designing models to accompany our visualization



Recall lecture 1: Visual analytics

e The science of analytical reasoning facilitated by interactive visual
interfaces
e Incivilterms:

@)

A domain expert (e. g., a scientist or a police investigator) wants to solve a problem (e. g.,
investigate a suspect’s seized computer or the incidence of a disease in a population)
The solution comes from analyzing a large, complex dataset which cannot be feasibly
analyzed by normal means
Visual analytics builds a system that allows the expert to analyze the data iteratively and
interactively

m Iteratively: it takes time and a gradual approach to grapple with the data

m Interactively: static visualizations don’t cut it, the expert has to perform many

subtasks to progress, hands-on approach helps understanding



Visual analytics example: OmniSci

omni-sci DASHBOARDS DATA MANAGER HELP ~

Global Confirmed COVID-19 Cases and Spread
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Daily Case Growth

=, Daily Cases Growth (%) by Country

Country Statistics

< country_region ¢ Total Confirmed ¢ Total Deaths + Mortality Rate (%)
United States 2,996,098 131,480 43
Brazil 1,668,589 66,741 3.9
India 742,417 20,642 27

Daily Growth Rate

Russian Federation 693,215 10,478 1.8
Peru 309,278 10,952 3.5

Mortality (%)

New Deaths (Red)




Visual analytics example: Tableau

Executive Overview - Profitability (All)

Sales Profit Profit Ratio Profit per Order Sales per Customer Avg. Discount Quantity
$1,820,895 $231,963 12.7% $59.04 $2,313.72 15.71% 29,793
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Probably the closest to the concept of “general VA system”



Visual analytics: Typical aspects

e Ataglance:
o Dashboard-style interface
o Multiview design very important
o Individual views are often basic charts/plots or heavily utilize them
e A true visual analytics tool goes deeper:
o Aninteractive, intelligent model of the data that truly assists the user
o Tight integration of visualization and the model through solid interaction design



Evolution: From data mining to knowledge disc.

St

[Fayyad96]




Recall lecture 1: InfoVis pipeline

Visualization

\

Knowledge




Recall lecture 1: Visual analytics pipeline

Visualization \
Qta Knowledge

Model /
Lt

0 [KeimO08]




Visual analytics pipeline

J\Data

We start here

Visualization

Knowledge
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[KeimO08]
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Visual analytics pipeline

Data transformation
Cleaning
Selection

Integration

Data

Visualization

Knowledge

S

ddel

[KeimO08]
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Visual analytics pipeline

User interaction
Exploring data & model

Visualization

Knowledge

S

ddel

[KeimO08]
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Visual analytics pipeline

Model building
User feedback
Interaction

Visualization

A

Model building
Data mining
Statistical techniques
Machine learning

Knowledge

Model

N

[KeimO08]
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Visual analytics pipeline

Visualization

|

Model/parameter refinement
Changing structure
Choosing a different model

Knowledge

Model

S

[KeimO08]
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Visual analytics pipeline

Visualization

Model drives the
visualization (showing the
relevant data & model)

Knowledge

ddel

[KeimO08]
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Visual analytics pipeline

Visualization

ddel

Making observations in
the visualization

Knowledge

Interpreting model
parameters and outcomes

[KeimO08]
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Visual analytics pipeline

Visualization

\ Knowledge
A /
Model Feedback loop
Select new data
Find new data sources
[Keim08]
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Visual analytics pipeline

e System-centric overview of key components of visual analytics
e Let’'sadd human reasoning

18



Sensemaking process

3.Search for 6.Search for 9.Search for 12.Search 15.F§eevalgate
Information Relations Evidence for Support "~
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structure, Sensemaking Loop
overview)

(volume
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(finding neg volume) Reality/Policy|Loop

evidence,

volume)
2.Search 5. Read & 8.Schematize 11.Build 14.Tell

& Filter Extract Ca Story
EFFORT
[Pirolli05]



Sensemaking

e Sensemaking — Structuring unknown data into a framework enabling us to
comprehend, understand, explain, attribute, extrapolate, and predict

e The loops:
o Foraging loop — Seeking information, searching and filtering it, reading and extracting it

o Sensemaking loop — Iterative development of a mental model (conceptualization) that best

fits the evidence
o Reality/policy loop — Putting the findings in real-world context
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Sensemaking

Models:
o External data sources — Self-explanatory
o  Shoebox — Unstructured storage of data
filtered based on (rough) relevance

Processes:

o Search & filter (bottom-up) — Filter the
unstructured data and put the potentially
relevant instances into the shoebox

o  Search for information (top-down) — New
hypotheses at higher levels might drive
search for new data

STRUCTURE

[Pirolli05]
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Sensemaking

e Models:

o  Shoebox

o  Evidence file — Snippets extracted from
the information in the shoebox, either
confirming (hence “evidence”) or leading
to hypothesis (and thus insight)

e Processes:

o Read & extract (bottom-up) — Placing
relevant data items into the evidence file
(secondary, more detailed stage of
filtering)

o  Search for relations (top-down) —
Information in evidence file might suggest
new patterns or even hypotheses

STRUCTURE

[Pirolli05]

3.Search for
Information

6.Search for
Relations

How are they re/ated?
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Sensemaking

e Models:
o Evidence file
o Schema — A structured, well-organized
collection of information. Wide range of
forms: from a thought through
(preliminary) visualizations to curated
datasets being stored and documented
e Processes:
o  Schematize (bottom-up) — Putting
structure on the relevant information
o  Search for evidence (top-down) — New
hypotheses might drive search for new
evidence to support them

STRUCTURE

[Pirolli05]
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Sensemaking

e Models:

o Schema

o Hypotheses — (Tentative) representations
of the conclusions about the data

e Processes:

o  Build case (bottom-up) — A theory is
formalized based on the schema to
form/support hypotheses

o  Search for support (top-down) —
Reevaluation of theories leads to
reexamination of the schema

STRUCTURE

[Pirolli05]
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Sensemaking

e Models:

o

o

Hypotheses
Presentation — The outcome of your work
(“deliverable” could be a better word)

e Processes:

O

Tell story (bottom-up) — A deliverable is
built based on the hypotheses and
conclusion

Reevaluate (top-down) — Consumer
feedback often leads to reevaluation of
hypotheses or new hypotheses

[Pirolli05]

STRUCTURE
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Sensemaking

e At aglance, the sensemaking diagram could give the idea of a waterfall
o External data » Shoebox — Evidence file = Schema — Hypotheses — Presentation
o Youonly go back in the case of a mistake
e Onthe contrary: loops are an essential, constructive part of the process
o The users can loop freely as per their needs
o “Top-down and bottom-up processes are invoked in an opportunistic mix” [Pirolli05]

e ... and they drive the entire analytics process
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Machine model vs. mental model

e Discern between the machine model as a component of the visual analytics
system supporting analytics [Keim08], and the user mental model of the
data [PirolliO5]

e Both are called just “model” in the literature unfortunately

e Careful about the context
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Tasks, interactions and sensemaking

/ Usergoals and tasks \

N

A

High-level

h

X

r

Low-level

Explore, Analyze, Browse,
Assimilate, Triage, Assess,
Understand, Compare

/ Interactive visualization

Representation
Intents:

Depict, Differentiate,
Identify, Show outliers,

Compare
Mutual feedback
Retrieve value, Filter, Sort,
Compute derived value, Re X
) presentation
Find extremum, Correlate, Techniques:

Determine range, Cluster,
Characterize distribution,

Find anomalies /

Charts, Graphs,
Networks, Treemaps,

Qallel Coordinates, ...

Interaction

Intents:

Select, Explore,
Reconfigure, Encode,
Abstract/Elaborate,
Filter, Connect

Interaction
Techniques:
Selection, Brushing,
Dynamic query,
Pan/Zoom, ...

High-level

r 3

v

Low-level

Which components of the science of interaction [Pike09] are relevant for visual analytics?
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Tasks, interactions and sensemaking

High-level
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v

Low-level
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Assimilate, Triage, Assess,
Understand, Compare

e
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Identify, Show outliers,

Compare
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Retrieve value, Filter, Sort,
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Filter, Connect
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Al of them...
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Tasks, interactions, and sensemaking

STRUCTURE
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Information Relations Evidence for Support 16.Presen-
Viho & what? How sre they related? :‘Z‘a: "d::,s 0’:, ::;: .‘{;; :,ip How do r know? tauon

2.Search 5. Read &
& Filter Extract

(multiple
hypotheses,
hypothesis gen|
. order bias
Foraging Loop 7 Evirlencs N\ hee source tracking|
% 5 (holding large
a File structure, Sensemaking §oop
(volume, overview)
\ organization)
(skimming,
finding info,
(finding neg volume) Reality/Policy|Loop
evidence,
volume)

8.Schematize 11.Build
Ca

EFFORT

.. because visual analytics needs to support all this

30



VA pipeline + human: Expanding “Knowledge”

Computer Human

uoIBAISSqO

- i Finding '

0 [Sachal4] 31



VA pipeline + human: Fully expanded

Computer

View

InfoVis Pipeline Vieual Transformations| _l!‘";z'::::‘?:s sensl-eon;:king
Trans!o::alionsc Tl::::s Sifticares h -—:_i
Visualization Heton
Hypothesis |
Knowledge

Stages of Interaction
Insight
Finding e

Human

3
“r
Tw-R;D
A

8. __
Daw/

Generation
Loop

: Verification
= S Loop
Selection Target Data — — Exploration
U= o
P
en Tranformed Patterns
KDD Process - o

19 A comprehensive VA model integrating several core, previously isolated ones [Sachal4] 30



VA theory: Usefulness?

e So, visual analytics theory = adding more and more arrows to InfoVis with

each successive paper?

o Certainly seemed that way to me when I started delving into it myself
o AndIdidn’t even know [Sachal4] back then...

o Isitreally useful?
o The users can keep going between phases as they please
o Vague terms such as insight or knowledge that are difficult to quantify
o The advice seems to be vague as well: “do whatever the user might need, and connect
everything with everything”



VA theory: Usefulness

e I'dsayitis useful, even if it might need a second glance
e Gets youinto the right desigh mindset

e Visual analytics indeed is highly multidisciplinary, involves (elements of):
o InfoVis to design nice visualizations

Data science to design models that support analytics

Software engineering: getting good reqs from the user, VA systems are complex code-wise

High-performance computing when tackling large datasets

Empathy & communication: the ability to think like the users and empower them with

analytics in their own domain

O O O O

Q 34



VA theory: Design takeaways

e InVA, “making challenging data accessible” is a perfectly valid objective

e Contrast with pure InfoVis: would be a Q-type error there (trifecta checkup)

o Because your visualization doesn’t make a point then, it just shows the data
o Visual analytics is all about allowing the users (analyst) to come to correct points on their
own, we're not telling a story

e Ifyou still want to use trifecta in visual analytics, I'd say Q in VA means
“sufficient interactive support for meaningful high-level tasks”

35



VA theory: Usefulness

3.Search for 6.Search for 9.Search for

Information Relations Evidence 16.Presen-
Viha & what? How are they related? What does it have to d 1
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2.Search 5. Read & 8.Schematize 11.Build

& Filter Extract Ca
EFFORT

Visual analytics vs. the final visualization (simplified, there are analytic visualizations too)




VA theory: Design takeaways

e Fully supporting all the connections is very challenging
o Thisis a widely-recognized challenge by the community
o Not all VA systems support everything, not even all successful VA systems
e Visual analytics systems are domain-specific and task-specific
o Thereis no single VA system best across all domains that work with data
o Also, none really supports all fathomable high-level analytic tasks
o Tableau is the closest to a “general VA system”, but even that is not the standard

e Both these aspects simplify the problem
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VA theory: Design takeaways

Visualization

VT

Knowledge

Model

\
)

The blue components are core to any true VA system
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VA theory: Design takeaways

e We already know how to create interactive, multi-view visualizations — and
that’s exactly the “Visualization” in the VA pipeline
e We also know how to evaluate visualization, and that theory applies to VA

too
o Insight-based evaluation especially useful!

o Remember: Q in trifecta checkup becomes “did we support the user in formulating and
supporting their own hypotheses?”

Q 39



VA theory: Design takeaways

e Sensemaking [PirolliO5] is a useful decomposition of different stages from

raw data to crisp hypotheses
o Helps identifying the key high- and low-level tasks
o And designing the interactions accordingly

e Theright side of the fully expanded VA pipeline [Sachal4] conceptualizes

user behaviour

o You can -and should — “roleplay” as the user throughout all stages of design
o This version of the pipeline gives you a schema for that
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Visual analytics model

e How do we go about supporting an interactive visualization with a model?
o The key missing ingredient so far

41



Integrating visualization and model

The model should be designed alongside the visualization

(@)

@)

@)

Think of the high-level task(s) and your data
Design the visualization & interactions

If done systematically, this defines the interface between visualization and model and the

requirements for it

Design the model

Iterate on this as you progress from design to implementation — waterfall planning never
works

42



Integrating visualization and model

Visualization \
(\Data T Knowledge
{ /
Model

19 Systematic, thoughtful, and iterative design of visualization & interaction takes care of this




Visual analytics: Good software practices

e Shift the heaviest load to preprocessing (the loop from “Data” to itself),

construct the model to maximize lookup operations
o These don’t hamper interactivity

e Modelin the backend - ideally all data ops should be performed here, with
efficient communication with the frontend

e Visualization in the frontend — Visualization just shows the data digested by
the model, plus rudimentary interactions

e Keep the state of the system as synchronized as possible
o You’ll save yourself a lot of headaches



Model: Supporting interaction

e Select - Highlight the item(s) in the visualization and keep state (will be used
in conjunction with the other interactions)
e Explore — Call on the model to show something else than what’s on the

screen/been seen in near past
o Inpractice: the inverse of filter and/or random(ized) selection

e Reconfigure — In the visualization if trivial (just reshuffling the display), rely
on the model to pull up data that are not on the screen

Q 45



Model: Supporting interaction

e Encode — The model provides efficient data structure if the encoding is

different, the visualization rerenders the data
e Abstract/elaborate — In all but trivial dataset cases, the zoom hierarchy
must be precomputed and fetched from the model
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Model: Supporting interaction

e Filter — Relies on an index which is again part of the model
o Fortabular data, a simple DB query might just do

e Connect — With good frontend design, can be taken care of (mostly) in the

frontend

o Views being able to access the selected data items from a frontend variable and not having to
ask the model all the time what is selected
o Efficient command to highlight specific IDs within the data structures across the views

Q 47



Model: Supporting interaction

e 3interactions rely on the model heavily, and present a computational

challenge in a live user session (they hinge on dynamic user choice):
o Explore
o Filter
o Abstract/elaborate
e 3 interactions need the model to supply efficient data structures:
o Reconfigure
o Encode
o Connect

e The need for tight integration hetween model and visualization clear
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VA Model: Modelling techniques

e A nice survey from a visual analytics perspective: [Endert17]
e Overviews all key modelling approaches beyond rudimentary statistical

techniques

o Note: The survey mentions “machine learning techniques”, but that is not a precise term.
o Hence the term “modelling techniques” we use in the lecture
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VA Model: Modelling technique categories

e Modify parameters (MP)

o The user directly manipulates the model parameters through the visualization

o The more populous category across all techniques

o Pros: easier to implement, exact meaning

o Cons: requires stats/machine learning knowledge from the user, non-intuitive
e Define analytical expectations (DAE)

o The user interacts within the domain of expertise (using domain knowledge), the model

behaves semantically: translating between the user’s language and the ML/stats language
o Fewer approaches exist

o  Pros: meaningful and intuitive to the user, no or little knowledge of stats/ML required
o Cons: difficult to implement, knowledge gap between the developer and the user

19 [Endert17]
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VA Model: Modelling technique table

Modify Parameters &
Computation Domain

Define
Analytical Expectations

Dimension  [JJ09], [FJA*11], [FWG09], [SDMT16], [EHM*11], [EBN13], [BLBC12],
Reduction  [WMO04], [NM13], [TFH11], [TLLH12], [HBM*13], [GNRMOS8], [[HG13], [KP11],
[JBSO8], [ADT*13], [JZF*09] [PZS*15], [KCPE16], [KKW*16]
Clustering  [Kan12], [RPN*08], [SBTKOS], [RK04], [HOG*12], [CP13], [BDWO08], [CCMOS],
[SS02], [LSS*12], [LSP*10], [TLS*14], [BBMO4], [ABV14], [KKP05], [KKO0S]
[TPRH11a], [AW12], [RPN*08], [HSCW13],
[TPRH11b], [PTRV13], [HHE*13], [WTP*99],
[YNM*13], [SGG*14]
Classification [PES*06], [MKOS], [MBD*11], [vdEvW11],  [Set09], [SK10], [BKSS14], [PSPM15]
[CLKP10], [KPB14], [AAB*10], [AAR*09],
[KGL*15]
Regression  [PBK10], [MP13], [MME*12], [TLLH12], [MGJHO8], [MGS* 14] [LKT*14] [YKJ16]

[KLG*16]

[Endert17]
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VA Model: Modelling techniques

e Dimensionality reduction
o Motivated in last lecture: enables visualization of n-D data wheren > 3
o PCA, MDS, ISOMAP, (t-)SNE, UMAP
o Approaches exist for both categories (MP & DAE)
o Unfortunately, no interactive methods for the top dim-reduction performers (t-SNE, UMAP)

e Clustering
o Unsupervised learning, automatically find groups of data items close to each other (clusters)
o k-means, spectral clustering...
o The most populated out of the model categories (possibly due to the base algorithms being
quite mature)
o Clustering on the whole, while still very useful, is being overtaken by the modern
dim-reduction methods in general ML applications



Dlmen5|onal|ty reduction (MP): Example

OOOOOOOOOO
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19 Multiview: central view with the projection, side panels for control
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Dimensionality reduction (MP): Example

® United States

® United Kingdon ® Slovenia $:Foland
® |
Portugal
® L ixembourg Educational attainment 35 -240
. 9.31 -0.0340
y 80.8 +0.390
n 5.2 -160
h 50 1.30
488 -0.200
ir.. 1495 +0130
® Ru
tion 178 +0310
correct distances
® B

Tooltip: Statistical summary of samples in a category
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Dimensionality reduction (MP): Example

® Finland
South America 3 samples
Northern Europe 9 samples nds
MEAN  DENSITY gium
Educational attainment 50 77 EliedBiE.
Employees workingve.. 18 6.2 Sl Germany
Life expectancy 75 81 Al
Life satisfaction 71 74 VS ® Czech
Self-reported health 65 77 v AR
Student skills 420 500 = <l
® S|o\

Time devoted to leisur.. 14 15 <Al
Yearsin education 16 19 _adih adl

Select 2 groups to compare them visually 55
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Dimensionality reduction (MP): Example

L ®
° °
o e
®
[ | X
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° . . —
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P
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Projection errors corrected for the orange sample: grey trace: farther in high-dim space, white: closer
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Clustering (DAE): Example

Clusters — Cluster heatmaps
The redder, the closer
the points are to each
other, the bluer, the
more distant. Red
rectangles surrounded
by blue around the
diagonal = strong
clusters.

Clustering 1, 2, 3

“The blue cluster and
half of the green cluster
from clustering 1 is
merged into the yellow
cluster in clustering 2.”

()

19 [Turkay11] 58



VA Model: Modelling techniques

e Classification
o Supervised learning: Data instances belong to categories called classes, the ML model tries to
learn these classes. Then it is able to assign an unlabelled data instance to correct class
o MP: prevalent in VA, techniques to construct classifiers in the UI, which then shows how well
the data is categorized
o DAE: again a smaller group, despite very good support for this in ML theory: semi-supervised
learning, interactive learning, relevance feedback, active learning

e Regression

o Supervised learning: “Continuous classification” — we don’t predict a class label, but a
continuous variable. Used also to fit a trend line through the data.
o Again, techniques for both MP and DAE,

Q 59



Classification (MP): Example

File Edi Loyt Data Quality Expot Colobp Window Help

Decision tree
Main view

Preset layouts

Attribute view

Attribute legend ---
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Regression (MP): Example

|Visualizing the distribution of a city’s natural gas consumption over features and feature pairs
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[Mihlbacher13], video: https://voutu.be/e88dMUbbSSw
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VA modelling techniques: Design takeaways

e A plethora of techniques
e Adding interactivity and dynamics to modelling state of the art is difficult
though

o Almost all techniques are static, “precompute once”
o For example, interactive deep nets still a very open challenge
o MLresearchers rarely think about interactivity “natively”

e That’s why the truly interactive techniques seem to “lag behind” the ML state
of the art by ~3-5 years at least

o The technique has to mature before it can be optimized
e You can still rely on state of the art in the precomputing phase and then
add interactivity on top



No ML in the model = No VA?

e Is asystem without ML in the model actually a true VA system?
o E.g., how about Tableau? Isn’t that just a multiview visualization, even if analytic?

e Itcould be —as long as it the model:

o Drives the visualization and is driven by the visualization
o Assists the users in gaining understanding, showing what’s relevant to them at a given time

e Example: the dimensionality reduction (MP) example, slides 53 — 57
o No ML, just statistical summaries, yet clearly supports analytics on the dim-reduced data

Pure InfoVis Analytic visualization or Pure VA
(no model) visual analytics? (elaborate/ML model)
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No ML in the model = No VA?

e InfoVis & VA approaches seem to occupy a continuous axis between:
o Pure InfoVis — no model involved, just a visualization
o Pure VA — An elaborate model involving advanced techniques such as Al that clearly supports
analytics
e Gray zone —is it an analytic visualization, or a visual analytics system?
o A system with multiple connected data views, with solid interaction design, but light on the
“backend calls”

Pure InfoVis Analytic visualization or Pure VA
(no model) visual analytics? (elaborate/ML model)
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No ML in the model = No VA?

e Tough to decide — no crisp, standard checklist to judge authoritatively

e Also, InfoVis + VA is one community scientifically
o Sothe need for crisp boundaries is not very high

e My opinion: it’s good that it’s a continuous axis, allows for a wider palette of
approaches with fewer formal exclusions of otherwise interesting ones
e Tableau is an example of a system in the gray zone

Pure InfoVis Analytic visualization or Pure VA
(no model) visual analytics? (elaborate/ML model)
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Examples: VAST best paper 2017
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TensorBoard [Wongsuphasawat18], video: https://vimeo.com/232930758
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Examples: VAST best paper 2017

e More of a nice visualization than a true visual analytics system IMHO
o Visualizes a deep net —that is a ML model, but from the PoV of the VA system, it’s data

o Still:

o Allows in-depth inspection of an arbitrary deep net
o “Trace input” adds an analytics dimension to understand the model

e Nice example of multi-view parsimony

67



Examples: VAST best paper 2018
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0, TPFlow [Liu19], video: https://voutu.be/oPZ1Xi-Edék
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Examples: VAST best paper 2018

e A clever model: tensor-like processing of spatiotemporal data

e A masterclass in multiview & interaction design
Views make sense

They are well connected

Individual visualizations are appropriate

Packed with meaningful interaction

O O O O
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Examples: VAST best paper 2019
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FlowSense [Yu20], teaser: https://vimeo.com/360154533 20
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Examples: VAST best paper 2019

e The modelis based on natural language
o  Write a query such as “draw mpg and cylinders in a scatterplot”
o The model will parse the query and draw the plot

e Great technique against a cluttered Ul
e Visualization: whatever the user wants it to be

o The system makes sure to adhere to proper practices, such as labelling etc.
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Examples: VAST best paper 2020
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0, VATLD [Gou21], teaser: https://youtu.be/NmtAOBrSNrM
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Examples: VAST best paper 2020

e VATLD = A Visual Analytics system to assess, understand and improve Traffic
Light Detection

e Model: representation learning (extracts useful data semantics) + semantic
adversarial learning (visual summarization)

e Good multiview design on top of the model, incl. multimedia data (images)
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Conclusion

e Ingredients for a visual analytics system:
o Fundamentally solid visualization
o Multiview design
o Meaningful support for interactions
o A machine model that takes care of:
Data representations for the visualizations
Efficiently searchable/filterable representation(s) to support filtering/exploring
Hierarchical representation(s) for (semantic) zooming
Some/all of the above will highly probably require machine learning
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Conclusion

e Trytosupport all stages of sensemaking

e Make the model as transparent and understandable for the users as
possible

e Putyourselfin the user’s shoes as you design
e [Endertl7] provides a good overview of modelling techniques

75



References: Optional reading

e [Endertl7] A.Endertetal.: The state of the art in integrating machine learning into visual analytics: Integrating
machine learning into visual analytics. Computer Graphics Forum, 36 (4), March 2017.

e [Fayyad96] U. Fayyad et al.: From data mining to knowledge discovery in databases. AI Mag., vol. 17, pp. 37 — 54,
1996.

e [Gou2l] L. Gou etal.: VATLD: A visual analytics system to assess, understand and improve traffic light detection.
IEEE TVCG, 27 (2), pp. 261 — 271, February 2021.

e [Keim08] D. Keim et al.: Visual Analytics: Definition, Process, and Challenges. In Information Visualization, Lecture
Notes in Computer Science, vol. 4950, Springer, Berlin.

e [Liud9] D. Liuetal.: TPFlow: Progressive partition and multidimensional pattern extraction for large-scale
spatio-temporal data analysis. IEEE TVCG, 25 (1) pp. 1 - 11, January 2019.

e [Miihlbachera3] T. Miihlbacher and H. Piringer: A partition-based framework for building and validating regression
models. IEEE TVCG, 19 (12), pp. 1962 — 1971, December 2013.

e [Pike09] W. A. Pike et al.: The science of interaction. Information Visualization, 8 (4), 2009.

Q 76



Reference: Optional reading

e [PirolliO5] P. Pirolliand S. Card: The sensemaking process and leverage points for analyst technology as identified
through cognitive task analysis. In Proc. Int Conf Int Analysis, January 2005.

e [Sachald4] D. Sacha et al.: Knowledge generation model for visual analytics. IEEE TVCG, 20 (12), pp. 1604 — 1613,
December 2014.

e [Turkayl1l1] C. Turkay et al.: Integrating cluster formation and cluster evaluation in interactive visual analysis. In
Proc. Spring Conf on Computer Graphics, 2011.

e [VanDenElzen11] S.vanden Elzen and J. J. van Wijk: BaobabView: Interactive construction and analysis of
decision trees. In Proc. IEEE VAST, 2011.

e [Wongsuphasawatl18] K.Wongsuphasawat et al.: Visualizing Dataflow Graphs of Deep Learning Models in
TensorFlow. IEEE TVCG, 24 (1), pp. 1 — 12, January 2018.

e [Yu20] B.YuandC.T.Silva: FlowSense: A natural language interface for visual data exploration within a dataflow
system. IEEE TVCG, 26 (1), pp. 1 — 11, January 2020.

Q 77



